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Abstract—This paper addresses the design of high-performance buffers for high-end Internet routers. The buffers are typically

implemented using a combination of SRAM and DRAM technologies in order to simultaneously meet the routers’ high speed and

capacity requirements. The major challenge in designing router buffers is to maintain multiple flow queues in the memory, unlike

computer memory buffers (i.e., memory system). The major objective is to minimize the use of expensive but fast SRAM while

providing acceptable delay guarantees to packets. In this paper, we first investigate hybrid SRAM/DRAM solutions proposed in the

past. We show that one of the architectural limitations of these solutions is that the required SRAM size grows linearly with the number

of flows in the system. This prevents the solutions from scaling to support a large number of flows. We then break down this

shortcoming by proposing a parallel hybrid SRAM/DRAM (PHSD) architecture. We design a series of memory management algorithms

(MMAs) for PHSD, based on tradeoffs between the complexity of the MMAs and the guarantee of in-order delivery of packets

(segmentations). We perform a detailed analysis of the proposed algorithms and conduct extensive simulations to show that PHSD

can significantly outperform solutions proposed in the past in terms of the SRAM requirements and packet delay.

Index Terms—Router memory, SRAM/DRAM, packet scheduling.
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1 INTRODUCTION

PACKET switches/routers deployed in the Internet typi-
cally contain buffers, which temporarily hold packets

that cannot be sent out immediately on an outgoing link.
The buffers are especially useful in dealing with temporary
congestion in the Internet. In general, the speed and size of
the packet buffers (typically determined by the electronic
memory technology used to implement them) have a
significant impact on the switch performance [1], [2]. The
memory speed is normally defined to be the reciprocal of its
access time.

It has been reported that [3], [4], [5], with the ever
increasing Internet line rate, current memory technologies
available, viz., SRAM or DRAM alone cannot simultaneously
satisfy both the router buffer’s speed and size requirements.
While SRAM is fast enough with an access time of around
4 ns, its largest size is limited by current fabrication
technologies to only a few megabytes and also consumes
a large amount of power. On the other hand, DRAM can be
built with large capacity, but its typical memory access
time1 is too large, around 40 ns. This discrepancy in
performance may be largely due to the fact that current
memory technologies are mainly optimized for computers,

not for routers. Extensive research has been carried out on
designing computer buffers, where a portion of data/
instructions in the memories will be reused many times
(normally referred to as the locality property [6]). Relatively
less attention has been paid to router buffers, where data/
packets are seldom reused and each packet is treated
equally in terms of processing. The locality property enables
computers to work well using a hierarchical cache-based
buffering system, which consists of small fast high-level
memories (e.g., register and/or the SRAM) and large low-
speed buffers (e.g., DRAM and/or hard disks). However,
the locality property does not hold for routers: each packet
comes into the memory and leaves sometime thereafter,
usually only once never to return.

To simultaneously meet the stringent speed and size
requirements, researchers proposed the implementation of
the router buffer as a combination of SRAM and DRAM in
order to exploit the individual advantages of both the
memory technologies. The basic idea is to use the SRAM in
the head and tail for fast reading and writing and DRAM in
the middle for buffering the majority of packets. Packets
shuttle between the SRAM and DRAM under the control of
a memory management algorithm (MMA). One difficulty of
the MMA is to find a way to match the access speed gap
between the SRAM and DRAM so that they can work
together smoothly to meet the external speed requirements
and provide sufficient buffering capacity. A generic model
of such a combined SRAM/DRAM buffer implementation
is shown in Fig. 1.

What makes the router buffer even harder to build is the
fact that a typical router contains multiple flow queues. For
example, input-queued (IQ) switches rely on virtual-output-
queuing (VOQ) technique where an input buffer maintains
N first-in, first-out (FIFO) queues corresponding toN outputs
[7]. Even in output-queued (OQ) switches separate queues
are maintained for different flows in order to support quality-
of-service (QoS) requirements of the flows [8]. Each flow
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1. Note that the access time of DRAM cannot be confused with its
bandwidth. Access to the first byte of a block in DRAM usually has a long
latency. Access to the subsequent bytes of the same row can be as fast as the
SRAM. Therefore, we assume in this paper that accessing a packet in
DRAM will cost 40 ns, no matter what the size of the packet is.
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queue may be as simple as FIFO. Queues management,
however, becomes a challenging task for buffer designers
when the number of flows increases.

1.1 Problem Statement

Our primary approach to router buffer design is to employ
a combination of SRAM and DRAM together with an MMA
in such a way that the buffers can meet both the speed and
capacity requirements, while supporting multiple flow
queues. The MMA should be able to successfully match
the access speed gap between the SRAM and DRAM. The
major objective of the design is to minimize the size of the
expensive and power-hungry SRAM while providing
reasonable performance (e.g., delay guarantees to packets).

We focus on the buffer’s ability to scale with
increasing number of flows. Ideally, the scalability of a
combined SRAM/DRAM solution should have the fol-
lowing properties:

1. The SRAM size and packet delay in the system
should not increase or increase slowly with the
increase in the number of flows.

2. The MMA should have low complexity so as not to
increase significantly with the increase in the
number of flows.

1.2 Conventions

We define the two basic parameters in the router buffer
design as follows:

1. b—The ratio of the DRAM access time to the SRAM
access time. To simplify the analysis, we also set the
access time of the SRAM as one time slot. Then, the
access time of the DRAM is b time slots.

2. Q—The number of flows supported in the buffer
system.

In practice, b can be regarded as a constant, around 10,
but Q might range from hundreds to millions.

For the SRAM size analysis, we measure the SRAM size
in terms of the number of packets it can hold rather than the
actual size in bits. It is common practice for high-end
routers to schedule fixed-length packets across their switch

fabric. High-end routers normally employ Segmentation
and Reassembly (SAR) modules in the line cards. Variable
length packets are segmented as they arrive, buffered, and
scheduled across the switch as fixed-length packets, and
then reassembled back into original packets before they
depart. The segmentation size is decided by the configura-
tion of the switch fabric. Our memory architecture is mainly
built for maintaining flow queues for the scheduler of
switch fabric. The segmentation and reassembly overhead is
usually taken by the SAR modules. It is easy to convert the
number of packets (segmentations) to the memory size if
packets (segmentations) are in fixed length.

1.3 Paper Organization

The rest of this paper is organized as follows: In Section 2, we
briefly introduce the related work in literature in building
high-performance packet buffers. We then show their
architectural scalability limitations analytically in Section 3.
We then propose a new buffering architecture (namely,
parallel hybrid SRAM/DRAM (PHSD)) eliminating these
limitations and design a primary MMA for it in Section 4. Its
performance is studied in Section 5. In Section 6, we present a
solution to the out-of-order problem in the primary MMA by
designing a series of new MMAs, which show the tradeoffs
between the performance and algorithm complexity. Simula-
tions are carried out to verify these results in Section 7. We
present some discussions in Section 8 and then conclude this
paper in Section 9.

2 RELATED WORK

The basic Hybrid SRAM/DRAM (HSD) architecture was
first introduced by Iyer et al. [5] and further explained in
detail in [9]. Fig. 2 shows the HSD, where two SRAMs hold
heads and tails of all the flow queues and a DRAM
maintains the middle part of the queues. Both the SRAM
and DRAM individually maintain Q separate flow queues.
When a packet arrives at HSD, it is first written to its flow
queue in the tail SRAM, waiting for the MMA to transfer it
to its corresponding queue in the DRAM. The key function
of the MMA is that it always transfers a block of b packets
every time, never smaller, from an SRAM queue to the
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Fig. 1. A generic SRAM/DRAM combination for packet buffers.

Fig. 2. The basic HSD architecture for packet buffers maintaining Q flows.



corresponding DRAM queue. Similarly, in the head, the
MMA always transfers a block of b packets, never smaller,
from a DRAM queue to the corresponding SRAM queue to
fulfill the output arbiter requests. These b packets should be
from the same queue so that they can be accessed
simultaneously. Each transmission costs b time slots. In
other words, the DRAM is always accessed by b packets
from the same queue in b time slots. We can see that the
DRAM is accessed in a larger granularity, b packets per
operation, while the SRAM’s access granularity is one
packet (one packet per operation from outside). Larger access
granularity to the DRAM helps it overcome the speed gap with
the SRAM so that they can work together smoothly.

Intuitively, since the MMA always transfers b packets in
a batch, the SRAM should be sized to absorb DRAM’s larger
granularity. The head SRAM should be sized to temporarily
hold packets that are not required by the output arbiter but
read out from the DRAM in batches. The tail SRAM should
also be sized to hold packets that are still waiting to
accumulate up to b packets. The authors proposed an
earliest-critical-queue-first (ECQF) MMA, which uses a look-
ahead scheme to replenish the queues in the head SRAM.
The ECQF-MMA waits and looks sufficiently ahead at
many packet requests from the output arbiter, then
combines this information with the packets already in the
head SRAM and calculates which queue will be the first to
become empty under the current sequence of requests. This
queue is named the earliest critical queue. The ECQF-MMA
chooses the most critical queue and replenishes it by
transferring b packets from the corresponding queue in
the DRAM. Since HSD is symmetric, a similar MMA can be
performed between the tail SRAM and the DRAM. The tail
MMA just waits until a flow queue has first accumulated
b packets and then transfers them in a batch to the
corresponding DRAM queue. The MMA in the tail SRAM
can thus be called earliest-full-queue-first (EFQF) MMA.

It is proved in that the worst-case size required for the
SRAM, both at the tail and head, is Qðb� 1Þ packets and the
possible delay a packet may experience is bounded by
Qðb� 1Þ þ 1 time slots under the continuously incoming
traffic assumption.

2.1 The HSD with Interleaved DRAM Banks

The basic HSD is the first attempt to build router buffers
with a combination of SRAM and DRAM. As we can see
from above, however, both the SRAM size and packet delay
amounts to OðQbÞ. To reduce the SRAM size requirement or
to make HSD capable of supporting more flows under a
limited SRAM size budget, Garcia-Vidal et al. [3] tried to

reduce the DRAM’s access time, b. In particular, they
redesigned the DRAM part by using interleaved DRAM
banks. They showed that the effective DRAM access time
can be reduced by overlapping multiple accesses to
interleaved DRAM banks. For example, as shown in
Fig. 3, if using M interleaved banks, the effective DRAM
access time can possibly be reduced to b=M, thus reducing
the SRAM size to OðQb=MÞ. The key challenge there is to
design a DRAM bank management algorithm to deal with
bank conflicts while the accesses are in flight. The authors
used an issue-queue-like mechanism to avoid the bank
conflicts.

Both their analysis and simulations showed that their
improved HSD system can support thousands of queues for
line rates up to 160 Gbps.

3 THE SCALING LIMITATIONS OF HSD

In general, the router buffer’s scaling problem can be
addressed in two dimensions: line rate scaling and flow
number scaling. The HSD design was targeted at addressing
the line rate scaling problem, at the cost of possible packets
pipeline delay. When the line rate is low, simply using
DRAM is sufficient for routers. As the line rates scale,
SRAM should be introduced to keep up with the increasing
line rate. The design of HSD, however, did not consider
scaling with the flow number Q as well. In particular, as
shown above, the SRAM size in HSD scales linearly with Q.
Given current SRAM fabrication limitations (a few mega-
bytes) and a normal packet size of 1,000 bytes, a simple
calculation shows that HSD can only work well with
Q < 1; 000. Even with the interleaved DRAM, the improved
HSD can support no more than 10,000 flows. In this section,
we show that it is the intrinsic limitation for HSD to scale
linearly with Q.

The authors in [5] derived the worst-case performance of
HSD, that is, the maximum SRAM required and maximum
packet delay under any possible traffic conditions. How-
ever, in practice, we are more concerned with its perfor-
mance under practical traffic conditions, which can help us
better understand the system. By practical traffic, we mean
the following weak assumptions about the traffic:

1. All the Q flows are independent of each other.
2. Each flow is a stationary and ergodic process.

These are reasonable and practical assumptions, since in
reality a flow source normally does not interfere with other
sources. Furthermore, the stationary and ergodic properties
are shown in nearly all types of practical traffic, such as
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uniform, hotspot, diagonal, and even bursty traffic in the

long term. We should also note that all the flows do not

necessarily have identical distributions.
To analyze the size of the SRAM required under this

practical traffic, we assume an unlimited SRAM size and

derive its expected occupancy. Focus on the tail SRAM in

HSD. The EFQF-MMA keeps receiving packets from outside

and puts them in their individual flow queues in the tail

SRAM. The EFQF-MMA waits until a queue has accumulated

packets and then transfers the block of packets as a whole

from that queue to the DRAM. Based on this behavior, we

now derive some properties of the HSD system.

Theorem 1. The expected occupancy of the tail SRAM in HSD

with EFQF-MMA is at least Qðb� 1Þ=2, with incoming

traffic conforming to the aforementioned two assumptions.

Proof. The tail SRAM should be large enough to hold the

residual packets for each of the Q flows that are still

waiting for the EFQF-MMA to transfer them to the

DRAM. Suppose the EFQF-MMA has run for a suffi-

ciently long time, and each flow i has piði � i � QÞ
packets that have arrived to the system. Then, each pi can

be represented as follows:

pi ¼ b �mi þ qið0 � qi < bÞ:

This representation tells us that for each flow i,
there are at least qi packets residing in the tail SRAM,
since the EFQF-MMA only transfers packets in a batch
of b packets.

Therefore, the SRAM should be large enough at least
to hold these

PQ
i¼1 qi residual packets.

By rewriting
PQ

i¼1 qi, we obtain

XQ
i¼1

qi ¼
XQ
i¼1

IAðqi ¼ 1Þ � 1þ
XQ
i¼1

IAðqi ¼ 2Þ � 2þ � � �

þ
XQ
i¼1

IAðqi ¼ b� 1Þ � ðb� 1Þ

¼
Xb�1

j¼1

XQ
i¼1

IAðqi ¼ jÞ � j:

ð1Þ

Here, IAð�Þ is an indicator function defined as
follows:

IAðxÞ ¼
1 if x is true;
0 if x is false:

�

Each qi is within the range of ½0; b� 1�. Since all the
flows are independent of each other and each flow is
stationary and ergodic, all their residuals qi packets should
be uniformly distributed across the interval ½0; b� 1�,
which indicates

E
XQ
i¼1

IAðqi ¼ jÞ
" #

¼ Q=b; ð0 � j < bÞ:

Therefore, by taking expectations on both sides in (1),
we obtain

XQ
i¼1

qi ¼
Xb�1

j¼1

E
XQ
i¼1

IAðqi ¼ jÞ
" #

� j

¼Q=b �
Xb�1

j¼1

j

¼Q=b � b � ðb� 1Þð Þ=2

¼Qðb� 1Þ=2:

That is to say, the expected number of packets in the
tail SRAM to initiate a transmission is at least Qðb� 1Þ=2,
which is just half of its worst-case requirement. tu

Corollary 1. In HSD, the expected packet delay in the head

SRAM with ECQF-MMA is at least Qðb� 1Þ=2 time slots,
with outgoing traffic conforming to the aforementioned two

assumptions.

Proof. Using similar analysis, we can see that in expectation
the ECQF-MMA in the head SRAM looks ahead at least

Qðb� 1Þ=2 packet requests to issue a transmission from
the DRAM. Therefore, the expected delay a packet may
experience is at least Qðb� 1Þ=2 time slots. tu

From above analysis, we can see that under practical
traffic, both the expected SRAM occupancy and packet
delay in HSD scale linearly with Q. Even with the
interleaved DRAM banks, this linearity does not disappear.
It shows to be an intrinsic limitation for HSD with ECQF/
EFQF-MMA to scale with the increasing number of flows.
Our first task is to remove this linear dependency on Q.

Another problem to be considered is about the MMA.
The ECQF/EFQF-MMA in HSD requires selecting the most
critical or full queue, which involves sort-related operations.
When Q increases, these sort operations quickly become
unfavorable for practical hardware implementations.

4 THE PARALLEL HYBRID SDRA/DRAM (PHSD)
AND THE RRSD-MMA

By carefully investigating the operations of the ECQF/EFQF-
MMA and the proof above, we can intuitively see that the
larger access granularity of the DRAM causes the SRAM
occupancy to increase and consequently increases packet
delay. Specifically, the larger access granularity of the DRAM
makes HSD non-work-conserving. That is, packets/requests
may wait for the MMA to accumulate b packets/requests in
one queue. All flows may experience non-work-conserving
behavior and the SRAM should hold all the waiting packets/
requests for each flow. Consequently, the SRAM size or
packet delay should be proportional to the number of flows,
which is at least linear with Q.

4.1 The Parallel Hybrid SRAM/DRAM Architecture

We try to remove this disadvantage, viz., the non-work-
conserving property of HSD by employing PHSD architec-
ture. In PHSD, both the SRAM and DRAM have the same
access granularity—one packet per operation, so that
packets do not wait unnecessarily. To match the access
speed gap between the SRAM and DRAM, we employ
round-robin dispatchers to divert the traffic from individual
flows to different queues.
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We use Fig. 4 to illustrate the PHSD system. Basically, it

consists of kðk � bÞ parallel subsystems, each being a
combined SRAM/DRAM structure. We must point out

the differences between the subsystems here and the

basic HSD:

1. In the subsystem in PHSD, only the DRAM main-
tains Q FIFO flow queues, while each SRAM
maintains just a single FIFO queue for all flows;

2. Packet transmission between the SRAM and DRAM
is one by one, not b packets in a batch as in the basic
HSD system. Thus, the access granularity of the
DRAM is also one packet.

4.2 The RRSD-MMA

We first design a very simple yet efficient MMA on PHSD.

We focus on the tail part of the MMA. As shown in the

figure, the MMA consists of two components: the per-flow

round-robin (RR) packet dispatcher and the SRAM to DRAM

(SD) transferor in each subsystem. Therefore, we call this

MMA as RRSD-MMA.

ALGORITHM RRSD-MMA

The RR and SD components work independently:

RR—the per-flow round-robin packet dispatcher

When a packet arrives at the memory system, the RR

dispatcher simply adds it to a subsystem according its
flow ID and the round-robin rule. For example, if a packet

is the ith packet in a flow, then it should be dispatched

into subsystem j, where j ¼ imod k. The dispatcher

completes writing a packet into an SRAM in just one

time slot.

SD—the SD transferor between the SRAM and DRAM

In each subsystem, the SD keeps transferring the head-of-

the-queue packet of the SRAM one by one into the
corresponding flow queue in the DRAM whenever the

SRAM is nonempty. The SD completes a packet transfer in

b time slots.

PHSD is symmetric. A similar MMA can be employed in
PHSD head. If we view the arbiter requests as virtual

packets and being dispatched into the k head SRAMs in a

per-flow round-robin fashion, then transferring packets

from the DRAM to the head SRAM can be viewed as

transferring virtual packets from the head SRAM to the

DRAM. The requests (virtual packets) are queued in the end

of the flow queues in the head SRAM and get replenished in
a first-queued-first-served way. It is obvious to see that they
are mirror operations of the RRSD-MMA in the tail, and
therefore, the head MMA shares the same performance
analysis. In the following, we mainly focus on analyzing the
tail SRAM unless otherwise stated.

5 PERFORMANCE ANALYSIS FOR PHSD WITH

RRSD-MMA

It is easy to see that the RRSD-MMA is quite simple and its
time complexity is Oð1Þ since the RR only has to decide
which subsystem the packet should go to and then dispatch
it. The SD is work conserving and does not involve sorting
or searching in the SRAM.

To analyze the SRAM size requirements for PHSD with
RRSD-MMA, we note that the speed of the SD is (b times)
slower than that of the RR. Although the long-term speed of
the RR feeding the subsystem should be divided by k, the
SRAM should still be sized to absorb the possible bursty
packets from different flows that might simultaneously feed
the same subsystem. In this part, we first analyze the worst-
case SRAM size for PHSD and then investigate the expected
SRAM occupancy under practical traffic conditions.

5.1 The Worst-Case SRAM Size and Packet Delay
in PHSD

To analyze the performance of PHSD, we should first have
a definition of critical period for an SRAM.

Definition 1 (critical period). A time period is called a critical

period for an SRAM, if in this period the SRAM does not ever

become empty. The length of the critical period is represented

as T time slots. T may be infinity if the SRAM is never

emptied.

Theorem 2. In PHSD with RRSD-MMA, for any tail SRAM A,

in any of its critical period T , the occupancy S in A satisfies

the following equation: S � Qð1� 1=kÞ þ T=k� T=b.
Proof. In the critical period T , there are at most T packets

arriving to the system. They belong to Q flows
individually. We assume that qiðq � i � QÞ packets
belong to the ith flow.

Therefore,
PQ

i¼1 qi ¼ T .
In particular, each qi can always be decomposed into

qi ¼ ni � k�mið0 � mi � k� 1Þ.
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This form can tell us that at most ni packets from the
ith flow will go to the SRAM A.

Combining the above two equations, we can obtain

XQ
i¼1

ni � k�
XQ
i¼1

mi ¼ T:

Therefore,

XQ
i¼1

ni ¼
T þ

PQ
i¼1 mi

k
:

Since 0 � mi � k� 1,

XQ
i¼1

ni �
T þQðk� 1Þ

k
¼ Qð1� 1=kÞ þ T=k:

According to the definition of critical period, the
SRAM A is nonempty during the T time slots. Therefore,
the SD transferred T=b packets into the DRAM.

Therefore, the maximum occupancy of the SRAM is

S ¼
XQ
i¼1

ni � T=b;

�Qð1� 1=kÞ þ T=k� T=b:

tu

From this theorem, we can immediately find the
following two facts:

1. If k < b, Qð1� 1=kÞ þ T=k� T=b can be infinite if T
goes to infinity. This means that the occupancy S of
SRAM A is unbounded.

2. If k > b, Qð1� 1=kÞ þ T=k� T=b � Qð1� 1=kÞ. This
means that the occupancy S of SRAM A is bounded
by Qð1� 1=kÞ.2

Further, we can derive the following corollary from

fact 2.

Corollary 2. In PHSD with RRSD-MMA, if k � b, then the total
tail SRAM size in all k subsystems is bounded byQðk� 1Þ and
the packet request delay is bounded by bQð1� 1=kÞ.

Proof. There are k tail SRAMs in total and each SRAM size is
bounded by Qð1� 1=kÞ from the above fact 2. Therefore, the
total maximum SRAM size in the tail of PHSD is

k �Qð1� 1=kÞ ¼ Qðk� 1Þ:

For the packet request delay analysis, the maximum delay

happens when the arbiter issues a request to the head SRAM,

the request queues in the Qð1� 1=kÞ position. It will cost that

MMA b �Qð1� 1=kÞ time slots to service that request, since it

costs b time slots for the MMA to read out a packet from the

DRAM. Therefore, the maximum delay a request may

experience is bQð1� 1=kÞ time slots. tu
To be comparable to HSD, we set k ¼ b in PHSD.

Therefore, the total SRAM size in the tail is bounded by

Qðb� 1Þ, and the request delay is also bounded by Qðb� 1Þ,
which are the same as those from the ECQF/EFQF-MMA
in HSD.

5.2 The Expected Performance of PHSD under
Practical Traffic Conditions

We have seen that the worst-case performance of PHSD with
RRSD-MMA is the same as HSD with ECQF/EFQF-MMA.
So, besides the reduced MMA complexities, what else does
PHSD gain from employing the parallelism? We show here
that the expected performance of PHSD significantly outper-
forms that of HSD under practical traffic conditions.

Intuitively, PHSD is a fully distributed and asynchronous
system, and it breaks down the scaling limitations in HSD by
smaller access granularity to the DRAM. The RRSD-MMA is
work conserving, which means that whenever an SRAM is
nonempty, the RRSD-MMA is able to transfer packets in
PHSD. On the contrary, always waiting for b packets makes
the ECQF/EFQF-MMA non-work conserving in HSD. This
means that HSD needs more SRAM to hold waiting packets,
while PHSD can keep the SRAM as small as possible.

However, it is very difficult to analyze the exact
performance of the RRSD-MMA under practical traffic
conditions. In general, it cannot be modeled using any
stochastic process since there is a deterministic indicator
function in it—the round-robin process. We resort to a
heuristic method here, which gives rather good insights into
the behavior of PHSD.

We focus on one tail SRAM A in a subsystem and see
how many packets it can accumulate. We start the analysis
from simple situations with fewer flows. For example, if
there is only one flow in the system, the SRAM A can only
accumulate at most one packet since the flow is dispatched
into k subsystems in a round-robin way and k � b. If a
second flow comes to the PHSD system, A might
accumulate two packets if the two flows are feeding A
simultaneously; otherwise, A can only accumulate one
packet. The first situation is less likely to happen since there
are k subsystems and the two flows are independent.
Continuing to add more flows sequentially to the PHSD
system, we can see that the possibility that they are
synchronized to A is very small since they are all
independent. In other words, each new flow has a marginal
bursty effect on A’s occupancy. However, this marginal
bursty effect decreases as the number of flows in PHSD
increases. The aggregated burstiness builds up the occu-
pancy of the SRAM.

In particular, we define the burstiness of a newly added
flow as follows:

Definition 2 (burstiness). Assume there are already q � 1 flows
in PHSD. When adding the qth new flow, the new flow adds a
burstiness of 1=k� ðq � 1Þ=qb to each of the k SRAMs.

We elaborate on this definition below:

1. The contribution of the newly added flow’s bursti-
ness to PHSD is 1=k, since the flow feeds the k
SRAMs in a round-robin fashion.

2. When there are q � 1 flows already in the PHSD
system, adding a new flow will decrease the
burstiness of each of these q � 1 flows by 1=q. This
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surely 0. Anyway, Qð1� 1=kÞ serves as a good and sufficient upper bound.



is because packets from the newly added flow
interleave into the existing q � 1 flows and thus
decrease their effective speed to ðq � 1Þ=q of their
original ones. This fact allows the SD to virtually
gain an additional ðq � 1Þ=q � ð1=bÞ ¼ ðq � 1Þ=qb
speed, since the original SD transferor speed is 1=b.

In summary, the qth flow adds a burstiness of 1=k�
ðq � 1Þ=qb to each of the k SRAMs.

Note that this definition of burstiness is only of the
incremental effect of the flow. It cannot be applied to the
individual flows that are already in the system. Accord-
ingly, we take an incremental approach to analyze the
SRAM occupancy. That is, for an equilibrium PHSD system
with Q flows, we assume it has evolved from the state of
having 1; 2; . . . ; Q� 1 flows, each state being an equili-
brium. It is certainly not a practical assumption. However, it
is valid enough to analyze the equilibrium state.

Based on this definition, we introduce the following two
propositions.

Proposition 1. When k ¼ b, the expected SRAM occupancy and
packet delay in PHSD with RRSD-MMA scales in a speed of
OðlnQÞ under practical traffic conditions.

Proposition 2. When k > b, the expected SRAM occupancy and
packet delay in PHSD with RRSD-MMA does not scale with
Q under practical traffic conditions.

Proof. Using the incremental analysis, we aggregate all Q
flows’ burstiness as follows:
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ð2Þ

Refer to the footnote for the details of the Harmonic
function HQ.3

We can see from (2) that

1. When k ¼ b, the first part in (2) is 0. Then, the
aggregated burstiness in the system is lnQ

b . Since b
is a constant, the SRAM occupancy should then
scale with OðlnQÞ. This supports Proposition 1.

2. When k > b and Q is sufficiently large, the first
part in (2) becomes over negative compared with
the second part, and hence, the aggregated
burstiness is less than 0. That is to say, the SRAM
occupancy cannot accumulate when Q is over
some threshold, which means that the SRAM
occupancy does not scale with Q. This supports
Proposition 2.

A similar analysis can be performed for the head
MMA. Using the concept of virtual packets, we can
conclude that in PHSD with RRSD-MMA the packet

delay scales with OðlnQÞ when k ¼ b and does not scale
with Q when k > b. tu

The above analysis shows that unlike the HSD’s linear
scaling withQ, PHSD can distribute the traffic into k parallel
subsystems and reduce both the SRAM size and packet delay
to anOðlnQÞ scaling speed. Furthermore, if we employ more
than b subsystems in PHSD, the average SRAM occupancy
and packet delay can be made independent of Q. We verify
these two properties by extensive simulations later in this
paper.

6 MODIFYING THE PHSD SCHEME TO MAINTAIN

PACKETS’ ORDER

6.1 The Out-of-Order Problem in PHSD with
RRSD-MMA

As we have seen above, PHSD can significantly reduce the
SRAM size and packet delays under practical traffic with very
simple RRSD-MMA. These advantages, however, come at a
small price, the possibility of packets being out of order. The
out-of-order problem can occur inside the PHSD due to two
reasons. First, since large packets are segmented into fixed-
length segments and buffered in different DRAM, their
relative order might be altered. Second, the order of whole
packets in a flow might also be altered after reassembly. We
note here that the first type of out-of-order problem is of
specific interest to us in this paper. The out-of-order problem
caused due to segmentation will result in unnecessary delays
or losses of packets inside the router. The packets order in a
flow (e.g., TCP) is not a fundamental requirement in the
Internet. However, when designing routers, we normally try
to keep the packet order inside the router [10], [11], if this can
be achieved at a reasonable cost even though it may not be a
strict requirement. This would prove beneficial for more
advanced feature of routers, such as QoS and various AQM
techniques.

In general, we formulate the out-of-order problem as
follows. The notation pðfi; nÞ represents the nth packet in
flow fi.

Definition 3 (out of order). For any flow fi in PHSD, if there
exist two integers n and m ðn > mÞ, such that packet pðfi; nÞ
arrives at the arbiter earlier than pðfi;mÞ, then we say the
PHSD has an out-of-order problem.

We proved that the packet delay is bounded in RRSD-
MMA, which indicates that the degree of the out-of-order
problem is controllable. A direct solution to this problem is
to use a sorting memory in the head side. However, this
requires additional SRAM for storage and sorting. In this
section, we solve this out-of-order problem within the
MMA itself.

6.2 The Modified PHSD

To maintain packet order, the basic idea is to guarantee in-
order transmission between the SRAM and DRAM. We
slightly modify the basic PHSD architecture. The new
PHSD system is shown in Fig. 5. Unlike the basic PHSD in
Fig. 4, each SRAM here maintains flow queues as well so
that the SD transferors can transfer packets from any flow
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3. The Harmonic function HQ is a summation of series
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queue head, instead of only from the head of a single FIFO
queue.

It is still a symmetric system, in terms of the number of
SRAM and DRAM needed in the head and tail sides. To
address the out-of-order problem, we focus on the head
part. The k SD transferors in the k subsystems no longer
work independently as in the RRSD-MMA. Instead, they
are coordinated by an In-Order Matching (IOM) scheduler,
as shown in Fig. 5. The IOM scheduler utilizes the Order
Table (OT) to determine how to control the individual SD
transferors. The OT remembers the least-ordered request Lfi
for each flow fi from all the k head SRAMs, which also
indicates the most urgent packet that is requested to be
transferred from the DRAM to the SRAM for that flow. For
example, Table 1 shows an instance of an OT. Lf2

¼ 92
means currently the least-ordered (most urgent) packet
request for flow 2 is 92.

We formulate the in-order scheduling between the DRAM
and head SRAM using a bipartite graph shown in Fig. 6a.
There are 2k vertices representing k DRAMs and k head
SRAMs. The links represent packet requests from the head
SRAM to the DRAM and each link is labeled as rðfi; nÞ, which
means the SRAM requests flow fi’s nth packet from the
DRAM.

We define an in-order match in the request graph as
follows:

Definition 4 (In-Order Match). In the request graph in Fig. 6a,
an in-order match is a link set U , in which the links conform to
the following two conditions:

1. No two links share a DRAM or SRAM vertex.
2. If a link rðfi; nÞ 2 U , then 8m ðLfi � m < nÞ, the

link rðfi;mÞ should also be 2 U , where Lfi is the least-
ordered packet request for flow fi in the OT.

The first condition is due to the one-packet access
granularity of the DRAM. The second condition is essential
to guarantee fulfilling the requests in order. For example,
Fig. 6b is an in-order match of Fig. 6a. However, Fig. 6c is

not. The request rðf2; 93Þ is in the matching set U , while
request rðf2; 92Þ is not. This violates the above condition 2.

6.3 Maximum In-Order Matching (MIOM)-MMA

We first design a Maximum IOM (MIOM)-MMA for PHSD.

We prove that the MIOM-MMA not only keeps packets in

order for each flow but inherits the same performance of that
in the RRSD-MMA as well. The MIOM is defined simply as
follows:

Definition 5 (MIOM). An MIOM is an in-order match, where

there is no SRAM, which has requests, left unmatched in the

final in-order match.

The most interesting result we found in the PHSD

request graph in Fig. 6a is that an MIOM is always
achievable for any request patterns in the head SRAMs in
PHSD. In particular, we state it as a theorem that follows.

Theorem 3. There always exists an MIOM for any request graph

in PHSD.

Proof. Basically, the theorem tells that for any request
graph, we can find a maximum matching (no SRAM left

with requests), while it is also an IOM. The proof is
lengthy and we defer it to the Appendix. tu

Based on Theorem 3, we are now able to present
the MIOM-MMA between the DRAM and head SRAM

in PHSD.

ALGORITHM MIOM-MMA

In each b time slots, the MMA finds an MIOM in the

request graph of the head SRAMs. It then transfers a batch
of packets according to the match. The transmission costs

b time slots.

After the transmission, the MIOM-MMA updates each

flow’s least-ordered request in OT with the just

transferred packets information.
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Fig. 5. The PHSD with IOM and OT.

TABLE 1
OT for the Head SRAMs Scheduling



The similar MIOM-MMA can be applied in PHSD’s tail,
where the requests in the MIOM-MMA are packets in the
tail SRAM.

The following theorem gives results on the worst-case and
expected SRAM occupancy for PHSD with MIOM-MMA.

Theorem 4. In PHSD with MIOM-MMA, the total size of the
tail (head) SRAM is bounded by Qðk� 1Þ þ kb. The expected
SRAM occupancy scales with OðlnQÞ if k ¼ b and does not
scale with Q if k > b.

Proof. We focus on PHSD tail to calculate the SRAM sizes.
Consider a tail SRAM A. A is work conserving except the
following situation. When an MIOM is to be found, A is
empty. However, while the batch of packets is to be
transferred according to the MIOM, A starts to accumu-
late packets. A can only accumulate up to b packets, since
the MIOM-MMA runs every b time slots and when A is
having packets afterward, it is guaranteed to be matched
by the MIOM-MMA.

That is to say, the occupancy of the SRAM A under the
MIOM-MMA is at most b packets larger than that under
the RRSD-MMA at any time. Since there are k SRAM in
the tail, the total additional SRAM needed by the MIOM-
MMA to absorb the burst is bounded by kb.

Using Corollary 2, we can derive that the maximum
SRAM size is bounded by Qðk� 1Þ þ kb. Using the two
propositions in Section 5, we can derive that the expected
SRAM occupancy is OðlnQþ kbÞ ¼ OðlnQþ b2Þ ¼
OðlnQÞ when k ¼ b and stays as constant when k > b,
since k and b can be regarded as constants for a specific
PHSD system. tu

Since PHSD is symmetric, the packet delay in the head
SRAM shares the same analysis as the SRAM size in the tail.

The proof of Theorem 3 also presents a method to find an
MIOM and we can derive that the MIOM-MMA complexity
is Oðk2Þ. It is explained as follows: To add one link to the
final matching, the algorithm might go through checking/
removing at most k� 1 other matched links to maintain the
in-order property. There are at most k links to be added in.
Therefore, the algorithm complexity is Oðkðk� 1ÞÞ ¼ Oðk2Þ.
If k ¼ b, the complexity becomes Oðb2Þ.

6.4 The Request-Grant (RG)-MMA

We have seen that MIOM-MMA maintains the low
requirements for the SRAM while providing packet’s in-
order delivery. However, it has two problems in practice:

1. The MIOM-MMA requires finding the maximum in-
order match. As we can see in the proof of Theorem 3,
the MIOM-MMA requires sequentially checking/
adding/removing requests, which is normally diffi-
cult to implement in hardware.

2. Some flow under the MIOM-MMA may experience
starvation. A constantly incoming flow may mono-
polize the MIOM-MMA process and exclude all
other flows from being matched.

In this section, we address these two problems by
designing a practical Request-Grant (RG)-MMA that is
ready for hardware implementation. To find a match, the
RG-MMA uses nearly the same idea as those RG-accept
negotiation algorithms well known in IQ switches [12].

ALGORITHM RG-MMA

The RG-MMA works every b time slots. It works in rounds

and each round consists of two phases: request and grant.

Request: Each flow fi sends a request rðfi; LfiÞ to the

ðLfi mod kÞth DRAM.

Grant: After a DRAM receives all requests from the flows,

if the DRAM is matched already, it does nothing. If the
DRAM is not matched, it selects one flow according to a

round-robin priority list.4

In a round, a match is formed and each granted flow

updates its least-ordered packet request in the OT to be

Lfi þ 1 and goes to the next round.

The RG-MMA keeps running the RG round until no
match is found in the round.

It is straightforward to see that the match found by the
RG-MMA is an in-order match, since the match for a flow fi
is always started from Lfi in the OT. In addition, we have
the following facts about this RG-MMA:
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4. The round-robin priority list is maintained like that in the iSLIP [12]
matching algorithm for the IQ switches. How to optimally select the starting
point in the priority list for a new round is out of the scope of this paper. We
only need the round-robin scheme to prevent flow starvation.

Fig. 6. Request graph between the DRAM and SRAMs and their matches. (a) Request graph. (b) In-order match. (c) Out-of-order match.

(d) Maximum in-order match. (e) Maximal in-order match.



1. The RG-MMA guarantees no starvation to each flow.
2. The RG-MMA stops after at most k rounds.

The first fact is due to the round-robin selection among all
the flows. Each flow has a chance to get granted in at most
Q rounds. The second fact is also easy to show. In each round,
at least one link can be matched. Since the maximum number
of links in the match is k, the RG-MMA stops after at most
k rounds. That is to say, the RG-MMA complexity isOðkÞ. It is
therefore very efficient to implement in hardware, since each
RG-MMA matching only involves at most k rounds of RG
processes, which are also distributed in k subsystems.

To analyze the performance of the RG-MMA, we first
define the following maximal in-order match for the request
graph.

Definition 6 (Maximal In-Order Match). A maximal in-order
match is an in-order match where no links can be added to the
match without violating the in-order property.

Fig. 6e shows a maximal in-order match where we
cannot add any request to DRAM D3. For comparison, we
can see that Fig. 6d shows an MIOM for the same request
graph.

It is obvious to see that the RG-MMA finds a maximal in-
order match in every b time slots. Since it is only maximal,
not MIOM, the RG-MMA might be non-work conserving.
With 100 percent traffic loads, the SRAM occupancies in
PHSD with RG-MMA could become unbounded.

This is a similar situation to the scheduling in the IQ
switches, where only the maximum weight matching
algorithms are proven to make the input queues bounded.
In practice, however, we can only employ heuristic
matching algorithms, such as iSLIP [12], FIRM [13], and
DRRM [14], which have less complexity to approximate the
maximal size matching. A common way to prevent the IQ
switches from having unbounded queues is to employ
speedup inside the switch fabric [15], which can also be
viewed as decreasing the traffic load.

In PHSD, we can prevent the unbounded queues in a
similar way and can decrease the effective traffic load by
employing more subsystems. In fact, the effective traffic
load to each subsystem is b=k, which is less than 100 percent
when k > b. We will see in simulation results presented
later that the performance of the maximal IOM is compar-
able to the MIOM when k > b, even when k is only bþ 1.

6.5 The Request-Transfer (RT)-MMA

RT-MMA presents a fast and efficient way to find the IOM.
In addition, it can be pipelined to further reduce the
hardware complexity. We describe the pipelined MMA as
follows:

ALGORITHM RT-MMA

RT-MMA works every time slot. In every time slot, it just

performs one round that consists of two phases: request

and transfer.

Request: Each flow fi sends a request rðfi; LfiÞ to the
ðLfi mod kÞth DRAM.

Transfer: After a DRAM receives all requests from the

flows, if the DRAM is not busy transferring a packet, it just

selects one flow according to the round-robin priority list

and starts to transfer a packet from the flow queue head. If

the DRAM is busy transferring a packet, it does nothing.

Each flow updates its least-ordered request in the OT to be
Lfi þ 1 after it transfers a packet.

It is obvious to see that Request-Transfer (RT)-MMA is
simply a pipelined version of the RG-MMA. Therefore,
they share the same performance characteristics except
that RT-MMA might introduce additional pipeline delay
to packets. As we can see from the second fact about the
RG-MMA, the pipeline delay a packet request might incur
is bounded by k time slots. Similarly, the additional
SRAM occupancy for each subsystem is at most k larger
with RT-MMA than with the RG-MMA. Since k can be
regarded as a constant, RT-MMA and RG-MMA share the
same scaling properties with regard to Q.

The algorithm complexity of RT-MMA is Oð1Þ, since it
only involves a round of RT in each time slot.

7 SIMULATIONS AND DISCUSSIONS

We perform extensive simulations for both HSD and PHSD
systems. The performance metrics we focus on in our
simulations are the maximum SRAM occupancies and
packet delays with respect to the increasing number of
flows in both systems. The SRAM occupancy is measured
by the number of packets it holds. The packet delay is
measured by the number of time slots from when the packet
is requested by the outside arbiter to when it actually leaves
the system. We simulate both systems under uniform
traffic, unbalanced (hotspot) traffic, and bursty traffic. For
the uniform traffic, incoming packets are uniformly
distributed across all the Q flows. For the unbalanced
(hotspot) traffic, 90 percent of the traffic aggregates to only
10 percent of the flows. In our simulations, we find the same
performance under both traffics. The simple reason is that
they all conform to the stationary and ergodic conditions. The
round-robin dispatcher in the tail preprocesses all traffic to
be sufficiently uniform to all the subsystems, regardless of
their nonuniformity to the flows. For the sake of space, we
only show results for both systems with the uniform traffic.

In all the simulations, we set b ¼ 10 and Q ranges from
100 to 10,000. All simulations run for 109 time slots, and we
record the maximum SRAM occupancies and packet delays.
For comparison purposes, we feed both HSD and PHSD
with exactly the same traffic in every simulation.

7.1 PHSD versus HSD under 100 Percent
Traffic Loads

We first compare the performance of HSD with ECQF/
EFQF-MMA and PHSD with MIOM-MMA under 100 percent
traffic loads, i.e., in every one time slot there is always one
incoming packet. To make them comparable, we set k ¼ b
in PHSD.

We can see from Fig. 7 that both the maximum SRAM
occupancy and packet delays in HSD with ECQF/EFQF-
MMA scales linearly with the number of flows Q. The
SRAM occupancy quickly scales beyond 10,000 packets
when Q reaches 2,000. With a normal packet size of over
1,000 bytes, an SRAM size of a few megabytes can hardly
hold over 10,000 packets. While in PHSD with MIOM-
MMA, both the maximum SRAM occupancy and packet
delay scale only in an OðlnQÞ speed, which conforms to our
Proposition 1. As we can see from the figure, the SRAM

WANG ET AL.: USING PARALLEL DRAM TO SCALE ROUTER BUFFERS 719



occupancy is still under 3,000 packets even when Q reaches

10,000.

7.2 PHSD versus HSD under Different Traffic Loads

We also test the performance of both systems under varying

traffic loads. We fix Q to be 5,000 for both HSD and PHSD,

and the simulation results are shown in Figs. 8 and 9. Fig. 8

shows that for PHSD with MIOM-MMA, the SRAM

occupancy and packet delay decrease significantly as the

traffic loads decrease.
However, for HSD in Fig. 9, the SRAM occupancy is

kept nearly unchanged even if the traffic load decreases to

50 percent. For the packet delays, they even increase when the

traffic load decreases. The intuition follows. In light traffic

loads, the ECQF/EFQF-MMA still needs to wait to gather

b packets in each flow queue to initiate a transmission. The

lighter traffic does not necessarily decrease residual packets

in each flow queue. Therefore, the maximum SRAM

occupancy essentially does not change. Consequently, this

fact also causes every packet to wait in the SRAM for a longer

time with lighter traffic. Therefore, the average packet delay

increases when the traffic load decreases.

7.3 Increasing k in PHSD

The performance of PHSD can be significantly improved

when k > b. We first simulate the MIOM-MMA perfor-

mance with k > b and the results are shown in Fig. 10. By

comparing it with Fig. 7, we can see that the SRAM

occupancy decreases dramatically when we increase k, even

when k is only one larger than b. In addition, when k > b,

the SRAM occupancy remains nearly as a constant, which

conforms precisely to our Proposition 2.
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We also simulate the RT-MMA for PHSD with k > b
and the results are shown in Fig. 11. We can see that the
RT-MMA has nearly the same constant scaling property as
that of the MIOM-MMA when k > b. And, the maximum
SRAM occupancy does not scale with Q even when k is
only one larger than b.

We can also find in Figs. 10 and 11 that the marginal
gain from increasing k further gets smaller and smaller.
This fact suggests that in practice it is sufficient to set k to
be bþ 1 or bþ 2.

7.4 The MIOM-MMA versus RG and RT-MMA

The RT-MMA is a pipelined version of the RG-MMA, and
therefore, their performance characteristics essentially share
the same property. As we have shown, RT/RG-MMA is
only a maximal version of the MIOM-MMA that is a
maximum matching. In this section, we conduct simulations
to find out the performance gap between the RT-MMA and
the MIOM-MMA. As we can see from Figs. 12 and 13, when
k becomes larger than b, or the traffic loads become lighter,
their performance gap becomes smaller. In particular, when

k > bþ 2 or the traffic load becomes less than 90 percent, the
RT-MMA performs comparably to MIOM-MMA with k ¼ b
or 100 percent traffic. This fact makes PHSD with RT-MMA
more appealing under lighter traffics, or we can leverage the
performance of RT-MMA by employing more subsystems
even when the traffic load is 100 percent.

8 SUMMARY AND DISCUSSIONS

The main performance results are summarized in Table 2
for both HSD and PHSD. We can see that PHSD with
RRSD-MMA is our starting point and achieves very good
performance with less MMA complexity. However, it
causes the packet out-of-order problem. The MIOM-MMA
maintains the packet order with PHSD. It also preserves
the same SRAM occupancy property as that of RRSD-
MMA, at the cost of a higher algorithm complexity Oðb2Þ. To
make the MIOM-MMA practical to implement, we use a
heuristic maximal matching algorithm RG-MMA to approx-
imate it. The RG-MMA can decrease the matching complex-
ity to OðbÞ. The RG-MMA complexity can be further
ecreased to Oð1Þ by employing pipelining, which we call
RT-MMA. We note that the SRAM occupancy in PHSD
with RG-/RT-MMA might be unbounded if k ¼ b, since
the maximal matching might be nonwork conserving.
However, when k > b, as we have seen in the simula-
tions, the SRAM occupancy decreases significantly and
becomes comparable to that of the maximum matching
MIOM-MMA.

From both analysis and simulations, we can see that
PHSD is not only a parallel (linear) improvement over the
basic HSD system. Its performance, in terms of SRAM
requirement, packet delays, and MMA complexities, sig-
nificantly outweighs that of HSD when there are a large
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Fig. 10. Maximum SRAM occupancy for PHSD with MIOM-MMA when

k increases.

Fig. 9. Performance for HSD with ECQF/EFQF-MMA under decreasing

traffic loads.

Fig. 11. Maximum SRAM occupancy for PHSD with RT-MMA when

k increases.

Fig. 13. Performance comparison between MIOM and RT-MMA when

traffic load decreases.

Fig. 12. Performance comparison between MIOM and RT-MMA when

k increases.



number of flows Q in the system. In fact, the PHSD removes
the scaling dependency on the flow number Q under
practical traffic conditions. Although Theorem 4 states that
the worst-case performance of PHSD is the same as that of
HSD, this worst case can hardly happen because it requires
all the Q flows synchronize perfectly (Q flows feeding the
same SRAM simultaneously all the time), which is of very
little possibility when Q is large. We have estimated the
possibility of the occupancy exceeding half of the number of
flows in the Appendix. We show that it is extremely small.
We have also shown this by simulations. In all our
simulations, we recorded all the maximum SRAM occu-
pancy and the maximum packet delays, both of which
comply with the average analysis very well.

The improvement of the expected performance enables us
to design the router memory practically and efficiently with
less SRAM. In practice, if we have the SRAM overflow in
some rare case, we can choose to drop the packet. This would
prove beneficial to the upper layer when the packet may
experience rather large delay if it was buffered in the
memory system. Nevertheless, from the simulations, we can
have an estimation of the maximum SRAM occupancy. For
the MIOM-MMA with k ¼ b and 100 percent traffic load, or
the RT-MMA with k ¼ bþ 2 or less than 90 percent traffic, the
maximum SRAM occupancy is less than 2,500 packets.
Assuming an average of 100 bytes per packet (for TCP traffic,
most packets are of 40 bytes), we can calculate that the
maximum SRAM occupancy is 2; 500� 100� 8 ¼ 2 Mbits,
which is well bounded by current SRAM fabrication
technology.

We can also see the tradeoffs between the complexity of
the MMAs and the guarantee of in-order delivery in Table 2.
Besides the MMA complexity, the in-order delivery also
cost two data structures, the per-flow queues in SRAM and
the OT, which scale linearly with Q. We believe some future
improvements can be made here. From the SRAM size
analysis, we know that packets residing in the SRAM is
significantly smaller than Q, which means that most of the
flow queues are empty most of the time. Therefore, some
overlap techniques can be used to reduce the complexities
of the two data structures.

9 CONCLUSIONS

In this paper, we first investigate existing proposals for the
router buffers that appeared in literature. We analyze their
performance and highlight their architectural scalability

limitations in supporting a large number of flows in the
system. Then, we address the limitations by proposing new
buffering architecture based on PHSD.

For PHSD, we first design a simple yet efficient MMA.
We prove that the SRAM size and packet delay can be
significantly reduced compared with previous solutions
with the same buffering capacity. However, this simple
MMA incurs the out-of-order problem for packets. We
proceed to solve this problem by designing a series of new
MMAs that show tradeoffs between the SRAM sizes and the
MMA complexities. Extensive analysis and simulations are
performed to assess the improvement obtained by PHSD
over previous solutions in terms of packet delay and the
SRAM size required in the system.

Having shown its nearly Oð1Þ MMAs and better packet
delay and SRAM requirements, we believe PHSD is among
the best candidates to build the next generation router
buffers, where they are expected to accommodate a large
number of flows at very fast line rates.

APPENDIX

PROOF OF THEOREM 3

Proof. We construct the MIOM in the following way.

Initialize: U ¼ �
Loop: (if there exists an SRAM A with request but

unmatched)

1) Select an arbitrary request rðfi; LfiÞ in A.

2) Add links frðfi; LfiÞ; rðfi; Lfi þ 1Þ; rðfi; Lfi þ 2Þ; . . . ;

rðfi;mÞg to U .
3) If the new link rðfj; tÞ, n < t � Lfi is already in U , then

remove the duplicates.

4) If the new link rðfj; tÞ, n < t � Lfi , shares the same

SRAM with one link rð�; �Þ that is already in U , then

remove rð�; �Þ from U .

End Loop

It is easy to see that in the final set U , no two links
share the same SRAM or DRAM. We now prove that all
the links in U preserves the in-order property.

After the first loop, U ¼ frðfi; LfiÞ; rðfi; Lfi þ 1Þ;
rðfi; Lfi þ 2Þ; . . . ; rðfi;mÞg. It obviously preserves the in-
order property and is an in-order match.
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TABLE 2
Performance Summary of All MMAs in Both HSD and PHSD



For the following loops, assume U is already an in-
order match and is about to add links frðfj; LfjÞ;
rðfj; Lfj þ 1Þ; rðfj; Lfj þ 2Þ; . . . ; rðfj; nÞg. We prove that
after removing the conflicts, U is still an in-order match.

We prove it by gradually removing link conflicts from
rðfj; n� 1Þ; rðfj; n� 2Þ; . . . ; to rðfj; LfjÞ, since rðfj; nÞ has
no conflicts.

For rðfj; n� 1Þ, if it has no conflicts with links already
in U , it surely does not cause an out-of-order problem. If
it is a duplicated link in U , removing it actually does not
change links in the original U and thus does not cause an
out-of-order problem. If rðfj; n� 1Þ shares an SRAM
with a link in U , say rðfs; tÞ; s 6¼ j, we assert that
removing rðfs; tÞ still does not cause an out-of-order
problem. Otherwise, if removing rðfs; tÞ causes an out-
of-order problem, it indicates that 9t0, t0 > t, and rðfs; t0Þ
is in U . According to the definition of in-order match,
rðfs; tþ 1Þ is also in U . Since packet requests are
dispatched into the subsystems in a round-robin way,
we know that rðfs; tþ 1Þ shares the same SRAM with
rðfj; nÞ, which is a contradiction.

After removing conflicts with rðfs; n� 1Þ, we proceed
with considering rðfs; n� 2Þ and the same analysis holds
that removing conflicts with rðfs; n� 2Þ does not cause
an out-of-order problem in U .

Since the newly added links frðfj; LfjÞ; rðfj; Lfj þ 1Þ;
rðfj; Lfj þ 2Þ; . . . ; rðfj; nÞg are in order and removing the
conflict links with them does not cause any out of order, we
can see that after one loop, U is still an in-order match.

In each loop, the size of U increases by at least one.
Since the maximum size match is k, the loop is surely to
stop. And, when it stops, the resulted U forms an MIOM
according to the definition. tu
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